Functional Calculus for Matrices.

Alonso Delfín
University of Oregon.

February 22, 2018

Abstract

.

Below I will explain how to make sense of $f(T)$ where T is an $n \times n$ complex matrix and f is a $C^{M}(U)$ function, where the integer M and the set U will be determined by the matrix T. I will be using elementary linear algebra techniques, so this should be accessible to everyone. I will cover an example and some general properties of this functional calculus. Time permitting, I'll explain how this is related to functional analysis: turns out this functional calculus gives rise to a projection valued discrete measure, so this is in fact a particular case of the Borel functional calculus.

Goal.

Consider the Banach Algebra \mathbb{C}^{n}. Then, $\mathcal{B}\left(\mathbb{C}^{n}\right)=M_{n}\left(\mathbb{C}^{n}\right)$. Fix $T \in M_{n}\left(\mathbb{C}^{n}\right)$ and take p a polynomial in \mathbb{C}. We may define $p(T) \in M_{n}\left(\mathbb{C}^{n}\right)$ in the obvious way. Our goal is to extend the map $p \mapsto p(T)$ to a bigger class of functions containing the polynomials in \mathbb{C}.

Background and main definition.

We fix $T \in M_{n}\left(\mathbb{C}^{n}\right)$ and consider $\sigma(T):=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ to be the set of distinct eigenvalues of T. If each λ_{j} has multiplicity mult $\left(\lambda_{j}\right)$, then we have

$$
n=\sum_{j=1}^{k} \operatorname{mult}\left(\lambda_{j}\right)
$$

Now let ψ_{T} be the minimal polynomial of T, that is the monic polynomial of least degree such that when evaluating T we get the zero matrix. It's well known that

$$
\begin{equation*}
\psi_{T}(x)=\prod_{j=1}^{k}\left(x-\lambda_{j}\right)^{m_{j}} \tag{1}
\end{equation*}
$$

where $1 \leq m_{j} \leq \operatorname{mult}\left(\lambda_{j}\right)$. Let m be the degree of ψ_{T}. Let χ_{T} be the characteristic polynimial of T, that is $\chi_{T}(x):=\operatorname{det}(T-x I)$. Then, by Cayley-Hamilton theorem, one has $\chi_{T}(T)=0$. So, we have that χ_{T} is a multiple of ψ_{T}.

Lemma. If g and h are non-zero polynomials, then $g(T)=h(T)$ if and only if

$$
\begin{equation*}
g\left(\lambda_{j}\right)=h\left(\lambda_{j}\right), g^{\prime}\left(\lambda_{j}\right)=h^{\prime}\left(\lambda_{j}\right), \ldots, g^{\left(m_{j}-1\right)}\left(\lambda_{j}\right)=h^{\left(m_{j}-1\right)}\left(\lambda_{j}\right) \tag{2}
\end{equation*}
$$

for all $j=1, \ldots, k$.
Proof. Suppose first that g and h are non-zero polynomials for which we have $g(T)=h(T)$. Then, if $d:=g-h$ we have $d(T)=0$. Hence, d must have degree greater or equal than m and must be a multiple of ψ_{T}. That is, there is a polynomial q such that

$$
d=\psi_{T} \cdot q
$$

Hence, $d^{\prime}=\psi_{T} \cdot q+\psi_{T} \cdot q^{\prime}$. But, it follows from (1) that

$$
d\left(\lambda_{j}\right)=0, d^{\prime}\left(\lambda_{j}\right)=0, \ldots, d^{\left(m_{j}-1\right)}\left(\lambda_{j}\right)=0
$$

for all $j=1, \ldots, k$, which in turn gives that

$$
g\left(\lambda_{j}\right)=h\left(\lambda_{j}\right), g^{\prime}\left(\lambda_{j}\right)=h^{\prime}\left(\lambda_{j}\right), \ldots, g^{\left(m_{j}-1\right)}\left(\lambda_{j}\right)=h^{\left(m_{j}-1\right)}\left(\lambda_{j}\right)
$$

for all $j=1, \ldots, k$.
Conversely, if (2) holds, then, for each $j=1, \ldots, k$, the polynomial $g-h$ has a zero of multiplicity a least m_{j} at λ_{j}. Thus, $g-h$ is a multiple of Ψ_{T} and therefore $(g-h)(T)=0$.

The previous lemma implies that for any polynomial p, the matrix $p(T)$ depends only on the values

$$
p\left(\lambda_{j}\right), p^{\prime}\left(\lambda_{j}\right), \ldots, p^{\left(m_{j}-1\right)}\left(\lambda_{j}\right)
$$

for $j=1, \ldots, k$.

From now on we consider functions in $C^{M}(U)$ where $M:=\max _{j}\left\{m_{j}-1\right\}$ and U is an open subset of \mathbb{C} such that $\sigma(T) \subset U$.
Definition. (Lagrange-Sylvester interpolation polynomial) For $f \in C^{M}(U)$, we define the polynomial ℓ_{f} by

$$
\ell_{f}(x):=\sum_{j=1}^{k}\left(\sum_{i=0}^{m_{j}-1} f^{(i)}\left(\lambda_{j}\right) e_{j, i}(x)\right)
$$

where each $e_{j, i}$ is a polynomial such that

$$
e_{j, i}^{(l)}\left(\lambda_{s}\right)= \begin{cases}1 & \text { if } j=s \text { and } l=i \\ 0 & \text { otherwise }\end{cases}
$$

By construction, we get

$$
\ell_{f}\left(\lambda_{j}\right)=f\left(\lambda_{j}\right), \ell_{f}^{\prime}\left(\lambda_{j}\right)=f^{\prime}\left(\lambda_{j}\right), \ldots, \ell_{f}^{\left(m_{j}-1\right)}\left(\lambda_{j}\right)=f^{\left(m_{j}-1\right)}\left(\lambda_{j}\right)
$$

for all $j=1, \ldots, k$. Thus, we define a functional calculus $f \mapsto f(T)$ by letting $f(T)$ be the matrix $\ell_{f}(T)$. Since ℓ_{f} is itself a polynomial and $\ell_{p}=p$ for any polynomial p, it follows that this functional calculus extends the polynomial one to the bigger class $C^{M}(U)$.

Example

Suppose that $T \in M_{n}(\mathbb{C})$ has ones above the diagonal ans zeros elsewhere. That is, T is given by

$$
T=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Notice that $\sigma(T)=\{0\}$ and that $\psi_{T}(x)=x^{n}$. Thus, for any $f \in C^{n-1}(U)$ (here U can be any open set containing 0), we have

$$
\ell_{f}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n-1)}(0)}{(n-1)!} x^{n-1}
$$

Hence,

$$
f(T)=\ell_{f}(T)=f(0) I+f^{\prime}(0) T+\frac{f^{\prime \prime}(0)}{2!} T^{2}+\cdots+\frac{f^{(n-1)}(0)}{(n-1)!} T^{n-1}
$$

Finally, we observe that multiplying T with itself j times, "pushes" the line of ones in the north east direction j times. This gives

$$
f(T)=\left(\begin{array}{ccccc}
f(0) & f^{\prime}(0) & \frac{f^{\prime \prime}(0)}{2!} & \cdots & \frac{f^{(n-1)}(0)}{(n-1)!} \\
0 & f(0) & f^{\prime}(0) & \cdots & \frac{f^{(n-2)}(0)}{(n-2)!} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & f(0) & f^{\prime}(0) \\
0 & 0 & \cdots & 0 & f(0)
\end{array}\right)
$$

Properties of $f \mapsto f(T)$

Proposition. Fix $T \in M_{n}(\mathbb{C})$. Let $f \in C^{M}(U)$, where M and U are as defined above.

1. If $S=P^{-1} T P$ for $P \in \mathrm{GL}_{n}(\mathbb{C})$, then $f(S)=P^{-1} f(T) P$.
2. If $T=\operatorname{diag}\left[T_{1}, \ldots, T_{j}\right]$, then $f(T)=\operatorname{diag}\left[f\left(T_{1}\right), \ldots, f\left(T_{j}\right)\right]$

Proof. For 1., we know from basic linear algebra that S and T have the same minimal polynomial and same eigenvalues. Further, note that $S^{k}=P^{-1} T^{k} P$ for any integer k. Hence,

$$
f(S)=\ell_{f}(S)=\ell_{f}\left(P^{-1} T P\right)=P^{-1} \ell_{f}(T) P=P^{-1} f(T) P
$$

For 2., we notice first of all that, by the simplicity of the polynomial functional calculus, we have

$$
f(T)=\ell_{f}(T)=\ell_{f}\left(\operatorname{diag}\left[T_{1}, \ldots, T_{j}\right]\right)=\operatorname{diag}\left[\ell_{f}\left(T_{1}\right), \ldots, \ell_{f}\left(T_{j}\right)\right]
$$

So it suffices to prove that $\ell_{f}\left(T_{k}\right)=f\left(T_{k}\right)$. Indeed, observe that

$$
\psi_{T}\left(\operatorname{diag}\left[0, \ldots, T_{k}, \ldots, 0\right]\right)=0
$$

Thus f and $\ell_{f}^{(l)}$ agree on $\sigma\left(T_{k}\right)$.
One consequence of the previous proposition is the way the functional calculus behaves with diagonal matrices:

$$
f\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)=\left(\begin{array}{ccc}
f\left(\lambda_{1}\right) & & 0 \\
& \ddots & \\
0 & & f\left(\lambda_{n}\right)
\end{array}\right)
$$

Theorem. (Sylvester's Formula) Let T be a diagonalizable matrix, that is $T=P \Lambda P^{-1}$ for a diagonal matrix Λ. If U is an open set in \mathbb{C} such that $\sigma(T) \subset U$ and $f \in C(U)$, then

$$
f(T)=\sum_{j=1}^{k} f\left(\lambda_{j}\right) P_{j}
$$

where

$$
P_{j}=\prod_{i \neq j} \frac{T-\lambda_{i}}{\lambda_{j}-\lambda_{i}}
$$

Proof. Since T is a diagonalizable matrix, linear algebra tells us that if $\sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, then

$$
\psi_{T}(x)=\prod_{j=1}^{k}\left(x-\lambda_{j}\right)
$$

Hence, ℓ_{f} is just the interpolation polynomial of f at $\sigma(T)$, otherwise simply known as the Lagrange polynomial. That is,

$$
\ell_{f}(x)=\sum_{j=1}^{k} f\left(\lambda_{j}\right) \prod_{i \neq j}\left(\frac{x-\lambda_{i}}{\lambda_{j}-\lambda_{i}}\right)
$$

Sylvester's formula now follows.
As a final remark, we show that Sylvester's Formula is a particular case of the Borel functional calculus. Indeed, notice that $P_{i} P_{j}=\delta_{i, j} P_{j}$ and that P_{j} is the projection onto the λ_{j}-eigenspace. So, if $\mathcal{P}: \mathfrak{B}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is σ-additive, $\operatorname{supp}(\mathcal{P})=\sigma(T)$ and $\mathcal{P}\left(\left\{\lambda_{j}\right\}\right)=P_{j}$. For each $z, w \in \mathbb{C}$, we have that $\mu_{z, w}: \mathfrak{B}(\mathbb{C}) \rightarrow \mathbb{C}$, given by $\mu_{z, w}(E):=\langle\mathcal{P}(E) z, w\rangle$ is a complex measure and that $\langle f(T) z, w\rangle=\int_{\sigma(T)} f d \mu_{z, w}$. So, in fact $f(T)=\int_{\sigma(T)} f d \mathcal{P}$.

