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Abstract.

Below I will explain how to make sense of f(T') where T is an n x n complex
matrix and f is a CM(U) function, where the integer M and the set U will
be determined by the matrix 7. I will be using elementary linear algebra
techniques, so this should be accessible to everyone. I will cover an example
and some general properties of this functional calculus.

Time permitting, I'll explain how this is related to functional analysis: turns
out this functional calculus gives rise to a projection valued discrete measure,
so this is in fact a particular case of the Borel functional calculus.

Goal.
Consider the Banach Algebra C™. Then, B(C") = M,,(C"). FixT € M,(C")
and take p a polynomial in C. We may define p(T") € M,,(C") in the obvious

way. Our goal is to extend the map p — p(T) to a bigger class of functions
containing the polynomials in C.

Background and main definition.

We fix T' € M,(C") and consider o(T") := {A1,...,A\x} to be the set of
distinct eigenvalues of T'. If each \; has multiplicity mult();), then we have

k
n= Z mult ()
j=1
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Now let 17 be the minimal polynomial of T, that is the monic polynomial
of least degree such that when evaluating T we get the zero matrix. It’s well
known that

k
vr(z) = [J@ =A™ (1)
j=1

where 1 < mj; < mult();). Let m be the degree of 17. Let xr be the
characteristic polynimial of 7', that is xp(z) := det(T — aI). Then, by
Cayley-Hamilton theorem, one has x7(7) = 0. So, we have that xr is a
multiple of .

Lemma. If g and h are non-zero polynomials, then g(T') = h(T') if and only
if

g(N) =h(N), g (N) =K (), - g =TIy (2)
forallj=1,... k.
Proof. Suppose first that g and h are non-zero polynomials for which we
have g(T) = h(T'). Then, if d := g — h we have d(T") = 0. Hence, d must

have degree greater or equal than m and must be a multiple of 7. That is,
there is a polynomial ¢ such that

d=1r-q
Hence, d' = 1 - q + 17 - ¢'. But, it follows from that
d(\;) =0, d(N) =0, ..., d™7D();) =0
for all j =1,...,k, which in turn gives that
g(\) = h(XN), g (N) = W), oy gD () = RTI()

forall j =1,..., k.

Conversely, if holds, then, for each j = 1,...,k, the polynomial g — h
has a zero of multiplicity a least m; at A\;. Thus, g — h is a multiple of ¥
and therefore (¢ — h)(T") = 0. [

The previous lemma implies that for any polynomial p, the matrix p(7T)
depends only on the values

p(A), D), -y PTITD()

forj=1,...,k.



From now on we consider functions in C™(U) where M := max;{m; — 1}
and U is an open subset of C such that o(7") C U.

Definition. (Lagrange-Sylvester interpolation polynomial) For f € CM(U),
we define the polynomial ¢; by

k m;—1
L) =Y | D0 FON)ejale) |
j=1 =0

where each e;; is a polynomial such that

6(‘[2()\5)2 1 if j=sandl=1
I 0 otherwise

By construction, we get

L) = FOG), G500 = /), .. 6770 (0g) = £ D(y)

for all j = 1,...,k. Thus, we define a functional calculus f — f(7T) by
letting f(T") be the matrix £#(T"). Since ¢y is itself a polynomial and ¢, = p
for any polynomial p, it follows that this functional calculus extends the
polynomial one to the bigger class CM (U).

Example

Suppose that T' € M, (C) has ones above the diagonal ans zeros elsewhere.
That is, T" is given by

010 0
0 0 1 0
T = : .o
0 0 0 ... 1
0O 00 ... 0

Notice that o(7) = {0} and that ¢r(z) = 2. Thus, for any f € C"~1(U)
(here U can be any open set containing 0), we have
f'(0) 5 SO0) L,

ST P ST

lr(x) = f(0) + f(0)z +



F0) oy FTVO)

f(T)=L£4(T) = f(O)I+ f(0)T + 51 (1)

Finally, we observe that multiplying 7" with itself j times, “pushes” the line
of ones in the north east direction j times. This gives

fO) fo) LY L0

0 fO) fO) - L0
A(T) =

0 0 f(0)  f'(0)

0 0 0 f(O)

Properties of f — f(T)

Proposition. Fiz T € M, (C). Let f € CM(U), where M and U are as
defined above.

1. If S = P7'TP for P € GL,(C), then f(S) = P~1f(T)P.
2. If T = diag[Th, ..., T}], then f(T) = diag[f(T1),..., f(T})]

Proof. For 1., we know from basic linear algebra that S and 7" have the same
minimal polynomial and same eigenvalues. Further, note that S¥ = P~1T*kP
for any integer k. Hence,

F(S) = £4(S) = £(P"'TP) = P~H4(T)P = P~ f(T)P

For 2., we notice first of all that, by the simplicity of the polynomial func-
tional calculus, we have

f(T) = £5(T) = ty(diag[Th, ..., Tj]) = diag[ls(T1), ..., £5(T})]
So it suffices to prove that £;(T}) = f(T}). Indeed, observe that

Yr(diaglo, ..., Tk,...,0]) = 0.



Thus f and égcl) agree on o(T}). |

One consequence of the previous proposition is the way the functional cal-
culus behaves with diagonal matrices:

A 0 f(A1) 0

o A, 0 fOw)

Theorem. (Sylvester’s Formula) Let T' be a diagonalizable matriz, that is
T = PAP~! for a diagonal matriz A. If U is an open set in C such that
o(T)CU and f € C(U), then

k
F(T) =) f\)P
j=1
where T
P = —
J 11_5 Aj— A

Proof. Since T is a diagonalizable matrix, linear algebra tells us that if
o(T)={A1,..., A}, then

k
vr(e) = [ =)
j=1

Hence, ¢ is just the interpolation polynomial of f at o(T"), otherwise simply
known as the Lagrange polynomial. That is,

50 = YT T (£=5)

j=1 it Y

Sylvester’s formula now follows. ]

As a final remark, we show that Sylvester’s Formula is a particular case of
the Borel functional calculus. Indeed, notice that F;P; = 0;;FP; and that
P; is the projection onto the \j-eigenspace. So, if P : B(C) — M, (C) is
o-additive, supp(P) = o(T') and P({\;}) = P;. For each z,w € C, we
have that i, ., : B(C) — C, given by ., (E) := (P(E)z,w) is a complex
measure and that (f(T)z,w) = fg(T) fdpz . So, in fact f(T) = fU(T) fdP.



